Cover image for Broad band : the untold story of the women who made the Internet / Claire L. Evans.
Broad band : the untold story of the women who made the Internet / Claire L. Evans.
Publication Information:
New York, New York : Portfolio/Penguin, [2018]
Physical Description:
278 pages : illustrations ; 24 cm
Introduction : The Dell -- Part one. The kilogirls. A computer wanted ; Amazing Grace ; The salad days ; Tower of Babel ; The computer girls -- Part two. Connection trip. The longest cave ; Resource one ; Networks ; Communities ; Hypertext -- Part three. The early true believers. Miss Outer Boro ; ; The girl gamers -- Epilogue : The cyberfeminists.
"The history of technology you probably know is one of men and machines, garages and riches, alpha nerds and brogrammers. But the little-known fact is that female visionaries have always been at the vanguard of technology and innovation--they've just been erased from the story. Until now. Women are not ancillary to the history of technology; they turn up at the very beginning of every important wave. But they've often been hidden in plain sight, their inventions and contributions touching our lives in ways we don't even realize. VICE reporter and YACHT lead singer Claire L. Evans finally gives these unsung female heroes their due with her insightful social history of the Broad Band, the women who made the internet what it is today. Learn from Ada Lovelace, the tortured, imaginative daughter of Lord Byron, who wove numbers into the first program for a mechanical computer in 1842. Seek inspiration from Grace Hopper, the tenacious mathematician who democratized computing by leading the charge for machine-independent programming languages after World War II. Meet Elizabeth "Jake" Feinler, the one-woman Google who kept the earliest version of the Internet online, and Stacy Horn, who ran one of the first-ever social networks on a shoestring out of her New York City apartment in the 1980s. Evans shows us how these women built and colored the technologies we can't imagine life without. Join the ranks of the pioneers who defied social convention and the longest odds to become database poets, information-wranglers, hypertext dreamers, and glass ceiling-shattering dot com-era entrepreneurs. This inspiring call to action is a revelation: women have embraced technology from the start. It shines a light on the bright minds whom history forgot, and shows us how they will continue to shape our world in ways we can no longer ignore. Welcome to the Broad Band. You're next"-- Provided by publisher.


Call Number
Material Type
Home Location
004.0922 EVA Book Adult Biography

On Order



If you loved Hidden Figures or The Rise of the Rocket Girls, you'll love Claire Evans' breakthrough book on the women who brought you the internet--written out of history, until now. This is a radically important, timely work, says Miranda July, filmmaker and author of The First Bad Man. The history of technology you probably know is one of men and machines, garages and riches, alpha nerds and brogrammers--but from Ada Lovelace, who wrote the first computer program in the Victorian Age, to the cyberpunk Web designers of the 1990s, female visionaries have always been at the vanguard of technology and innovation. In fact, women turn up at the very beginning of every important wave in technology. They may have been hidden in plain sight, their inventions and contributions touching our lives in ways we don't even realize, but they have always been part of the story. VICE reporter and YACHT lead singer Claire L. Evans finally gives these unsung female heroes their due with her insightful s

Author Notes

Claire Evans is Futures Editor of VICE 's technology website Motherboard . She is also the editor of VICE 's science-fiction imprint Terraform , as well as a contributor to Grantland, VICE, Wired , and The Guardian . Previously, she was a blogger for National Geographic 's popular culture and science blog Universe . She is the lead singer of the pop group YACHT.

Reviews 3

Publisher's Weekly Review

Journalist Evans's first book is an invigorating history of female coders, engineers, entrepreneurs, and visionaries who helped create and shape the internet, and whose contributions, she argues, are too often overlooked. The book's subjects stretch back to Ada Lovelace, Lord Byron's daughter and a collaborator with Charles Babbage on his analytical engine. Evans makes astute connections to draw her subjects into a narrative about the democratization of technology. Grace Hopper, who worked on the Harvard Mark I computer during WWII, "believed that computer programming should be widely known and available to nonexperts," which led her to develop one of the earliest programming languages. Stanford scientist Elizabeth "Jake" Feinler hired and trained other women to help her develop and maintain one of the first servers at the Network Information Center at Stanford in 1970s, and programmer Brenda Laurel brought gaming (and computer skills) to a generation of girls through her Rockett Movado series in the 1990s. If the spirit of the internet is collaborative, Evans's women embody that spirit entirely-which is no surprise, since, as Evans dutifully shows, they had a huge role in inventing it. (Mar.) © Copyright PWxyz, LLC. All rights reserved.

New York Review of Books Review

A WOMAN SCIENTIST was such a rarity in early-20th-century Britain that other women could not conceal their surprise at encountering one. Even the eminent suffragist Emmeline Pankhurst, when seated next to a female engineer at a formal dinner, was heard to exclaim, "But surely that's a very unsuitable occupation for a lady, isn't it?" The nation that employed two million women as domestic servants in 1900 counted 200 female doctors and two female architects. The Great War upset that imbalance. By the time the war ended, almost a million British women were carrying out chemical work in munitions factories, while others were synthesizing medicines, developing antiaircraft systems and code-breaking in naval intelligence. As Patricia Fara recounts in "A Lab of One's Own," however, many wartime advances in women's employment were rolled back soon after the Armistice. Fara, who studied physics at Oxford, did not venture lightly into writing about suffrage and science. Her first book-length biographies focused on Isaac Newton, Carl Linnaeus and Joseph Banks, but her research must have convinced her that there were many women toiling - anonymously and sometimes secretly - alongside such famous men. "A Lab of One's Own" is an engrossing, exciting tale of uncelebrated scientists who innovated and experimented against a background of grand historical events. The numerous heroines named in its pages, many of whom come and go with only a brief mention, challenge the reader to keep track. Yet their very multitude underscores Fara's underlying argument that there is nothing unusual about a feminine engagement with science. The love of botany, the passion for chemistry, the fascination with geology or cosmology is just as likely to animate a girl's mind as a boy's. If only her parents, her circumstances and the cultural norms of her country will answer her interest with education and opportunity, any girl may aspire to a lab of her own. For all Fara's erudition and scholarship, not to mention her description of herself as a "pernickety academic" at Clare College, Cambridge, she writes without a trace of stuffiness. She also avoids whining about chances missed or credit denied. With the same refreshing approach to perceived injustice that she displayed in earlier books like "Pandora's Breeches" and "Science: A Four Thousand Year History," Fara bends her talents to a sprightly telling of what happened: "At Imperial College London, during the First World War, Muriel Baker - wife of the professor of inorganic chemistry - was isolated at home in a small laboratory where she experimented on using stockings stuffed with cotton wool to absorb poisonous gases." Among the women Fara singles out for chapter-length treatment, Dr. Isabel Emslie Hutton led a particularly eventful life. "Taught by her parents to give away all but one of her Christmas presents on New Year's Day, she committed herself to medicine at the age of 17, renouncing with the dedication of a nun all thoughts of marriage." Eventually she did marry Maj. Thomas Hutton, but not before working as a pathologist in a Scottish mental hospital, carrying out research into chemical tests for syphilis, selling experimental guinea pigs to laboratories throughout Scotland and seeing in the outbreak of World War I the opportunity to practice surgery, "her favorite specialty but one normally reserved for men." Upon arrival in Salonika in October 1915, Emslie and her female colleagues "built incinerators, dug latrines, erected tents, installed X-ray equipment and set up a dispensary in a disused silkworm factory." She operated on wounded soldiers in a wooden hut. Military invasions and outbreaks of malaria kept Emslie moving from one field hospital to another - even serving as a commanding officer - all the way until the end of the war. Even then she stayed on in the region for two more years to treat civilian surgical patients in Serbia and children in Sebastopol. Despite Emslie's distinguished war record, her marriage in 1921 disqualified her from future employment as a surgeon in Britain. Resuming a prior interest, she served three decades as honorary consultant psychiatrist at the British Hospital for Mental and Nervous Disorders in Camden, "playing a key role in the introduction of psychoanalysis to Britain." At the same time she campaigned for equal pay for women doctors and helped women achieve international pilot's licenses by demonstrating that they were not "incapable of flying during periods and pregnancies." When her husband was posted to India she gave up her own career to follow him. "Trapped there during the Second World War," Isabel Emslie Hutton became director of the Indian Red Cross. "A Lab of One's Own," with its title salute to Virginia Woolf, is primarily an English war story. "Broad Band," in contrast, mostly takes place in the United States of the 1940s through the 1990s, and is peopled predominantly with all-American girls wanting, as Time magazine once quipped, "a ROM of their own." The author, Claire L. Evans, has met and managed to interview most of the principals in this recent history of technology. Her familiarity puts the reader on a firstname basis with all of them, as well as with two important predecessors - Ada (Countess of Lovelace, generally considered the world's first programmer) and Grace (Admiral Hopper, the Navy's much decorated queen of software). Evans proves a companionable guide for a tour through cyberspace. An insightful, intelligent observer, she speaks fluent tech lingo, has written about science and sci-fi for the likes of Vice and Wired, and also sings in a pop group. "When we say the words 'internet' and 'web,' " Evans writes, "we often mean the same thing: the force, larger than nature, that emanates from our screens." But the internet predates the web by decades. It harks back to the time when folks "dialed directly into each other's machines and into host computers to exchange files and post messages" in text-only format. "Many of these ad hoc networks interacted with, and eventually coalesced with, the infrastructure of the internet," a map of which today "is a tensile, crazy, fractal thing" akin to "a beating heart, a web of synapses, a supernova." The World Wide Web sits atop the internet, functioning as "a network of interconnected visual pages built in a shared language called HTML ... structured pages of text, images and video dotted with clickable links connecting individual points to one another. Those connections don't just influence how we navigate the web... but how we communicate with one another, and ultimately how we understand the world." The women pioneers who penetrated the mostly male domain of early computing did not always fit the geek mold. When Radia Perlman, for example, enrolled in her first programming course as a high school student in the 1960s (and many more courses later as an odd-woman-out at the Massachusetts Institute of Technology), she discovered that her classmates had been dismantling radios and other electronics from a tender age. "I never took anything apart," she told Evans. "I would have assumed I would break it or get electrocuted." Nevertheless, Evans reports, Perlman invented a protocol for moving information that is now fundamental to the way computers are networked. "Her work might be invisible to the everyday user, but it's invisible in the way that laws are invisible or the rules of traffic in a busy city are invisible: It directs the flow of information at a layer beyond our conscious awareness." Such contributions embolden Evans to declare, with emphasis: "Even when women were invisible, it never means they weren't there." It is tempting to think these unsung female presences of the past paved the way for today's women scientists. In fact they did not. They filled particular niches that opened briefly before closing again, leaving scant evidence, let alone a path to follow. Most people struggle to name even one woman scientist (usually Marie Curie). Both "A Lab of One's Own" and "Broad Band" - along with numerous other recent titles like "Hidden Figures," by Margot Lee Shetterly - provide much needed perspective, along with presumed-absent foremothers and role models. As a genre, these true stories constitute a chorus of voices all saying the same thing: "Yes, Virginia, there are women who do science." DAVASOBEL is the author of "Longitude," "Galileo's Daughter" and, most recently, "The Glass Universe."

Library Journal Review

Journalist and musician Evans delivers engaging, well-crafted portraits of the women who contributed to and influenced the development and invention of the Internet. Profiles include Grace Hopper, a gifted mathematician and academic who championed a future where computer programming was accessible to nonexperts. Hopper spent her days and many nights minding the Mark 1 computer at Harvard University during World War II, eventually crafting an early programming language. Some decades later, Elizabeth "Jake" Feinler harnessed and advanced ARPANET, a proto-Internet funded by the Department of Defense Advanced Project Research Agency. The narrative continues into the 1980s, when New York-based visionary Stacy Horn ran Echo, a pioneering social network popularized by women. These visionaries, Evans writes, arrive with each new technological wave, steadily and quietly forging indelible paths to the future. -VERDICT A tribute to the underacknowledged female pioneers whose contributions to technology, while sometimes difficult to measure, are impossible to forget.-Emily Patti, Racine P.L., WI © Copyright 2018. Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.



Chapter One A Computer Wanted It's 1892 in New York City. In January, an immigration processing center called Ellis Island opened for business. In March, in Springfield, Massachusetts, a YMCA instructor desperate to keep a class of stir-crazy youngsters entertained indoors hosted the first public game of "basket ball." But the winter is over, and it's the first of May, just shy of spring, just shy of the twentieth century. It's before the screen, the mouse, the byte, the pixel, and one hundred years before my Dell, but there's a strange notice in the classified pages of the New York Times. "A Computer Wanted," it says. This ad is the first instance of the word "computer" in print. It wasn't placed by an indiscreet time-traveler, someone trapped in the Gilded Age and jonesing for the familiar glow of their MacBook. It was placed by the United States Naval Observatory in Washington, DC, which was by then several decades into a mathematical astronomy project: calculating, by hand, the positions of the sun, stars, moon, and planets across the night sky. The observatory's directors were not in the market, that spring, to buy a computer. They were looking to hire one. For close to two hundred years, a computer was a job. As in someone who computes, or performs computations, for a living. Had one been browsing the Times that May Day in 1892 and decided to answer the classified ad, they'd soon be taking an algebra test. The Naval Observatory job was cushy, relatively: those who lived nearby worked in a cozy, informal office in Cambridge, far from the observatory itself, which was perched on a bluff above the Potomac. They clocked five-hour days, charting the skies from individual tables by a roaring fire, pausing often to discuss the scientific ideas of the day. The rest worked from home, from detailed mathematical plans they received in the mail. Computing, as one historian has noted, was the original cottage industry. Every day, these computers-much as computers do today-would chip away at complicated, large-scale math problems. They wouldn't do it alone. Our new hire would be part of a team: everyone crunching their share of the numbers, some correcting each other's work for extra income. With pen and paper alone, the Naval Observatory team would chart the skies, just as other computing offices throughout the Western world would advance ballistics, maritime navigation, or pure mathematics. They wouldn't receive much individual credit, but whatever the problem was, they'd have been instrumental in solving it. Computing offices were thinking factories. The nineteenth-century British mathematician Charles Babbage, whose desire to calculate by steam led to important early developments in mechanical computing, called what the human computing offices of his time did "mental labor." He considered it work one did with the brain, just as hammering a nail is work one does with the arm. Indeed, computing was the grunt labor of organized science; before they were made obsolete, human computers prepared ballistics trajectories for the United States Army, cracked Nazi codes at Bletchley Park, crunched astronomical data at Harvard, and assisted numerical studies of nuclear fission on the Manhattan Project. Despite the diversity of their work, human computers had one thing in common. They were women. Mostly, anyway. The Naval Observatory hired only one female computer for its Nautical Almanac Office, although she was by far the most famous among them: Maria Mitchell, a Quaker from Nantucket Island, who had won a medal from the king of Denmark before she was thirty for discovering a new comet in the night sky. It came to be known as "Miss Mitchell's Comet." At the observatory, Mitchell calculated the ephemeris of Venus, being, as her supervisor told her, the only computer fair enough to tackle the fairest of the planets. Her presence as a woman in a computing group was unusual for its time, but it would only become less so. Maria Mitchell discovered her comet only a year before the Seneca Falls Conference on the Rights of Women, which was largely organized by Quaker activists. Her church was the sole religious denomination allowing women to preach to its congregations, and Maria's father, an amateur astronomer, lobbied aggressively for her accomplishments to be recognized. Before the end of the twentieth century, computing would become largely the purview of women. Female mental laborers, breaking intractable problems down into numerical steps much as machines tackle problems today, ushered in an era of large-scale scientific research. By the mid-twentieth century, computing was so much considered a woman's job that when computing machines came along, evolving alongside and largely independently from their human counterparts, mathematicians would guesstimate their horsepower by invoking "girl-years," and describe units of machine labor as equivalent to one "kilogirl." This is the story of the kilogirls. It begins, as the most beautiful patterns do, with a loom. The Spider Work The loom is a simple technology, but in the warp and weft of thread lies the weaving of all technologically literate society. Textiles are central to the business of being human, and like software, they are encoded with meaning. Every cloth is a record of its weaving, an interconnected matrix of skills, time, materials, and personnel. As the British cultural theorist Sadie Plant observes, "the visible pattern" of any cloth "is integral to the process which produced it; the program and the pattern are continuous." This process, of course, historically concerns women. Around looms, in sewing circles, in ancient Egypt and China, and in southeastern Europe five centuries before Christianity, women have woven clothing, shelter, the materials of writing, even currency. Like many accepted patterns, this was disrupted by the Industrial Revolution, when a French weaver, Joseph-Marie Jacquard, proposed a new way to create textile patterns. Unlike a traditional loom, singularly animated by its weaver's ingenuity, Jacquard's invention produced remarkably complex textiles from patterns punched into paper cards, reproducible and consistent beyond a margin of human error. The resulting damask, brocade, and quilted matelassZ became highly coveted all over Europe, but the impact of Jacquard's loom went far beyond industrial textile production: his punched cards, which separated pattern from process for the first time in history, would eventually find their way into the earliest computers. Patterns encoded on paper, which computer scientists later called "programs," could dictate numbers as easily as thread. The Jacquard loom put skilled laborers out of work. Some took out their anger on the frames of the new machines, claiming as a folk hero the apocryphal Ned Ludd, a weaver said to have smashed a pair of stocking-frames at the end of the previous century. We use the term Luddite now in the pejorative, to describe anyone with an unreasonable aversion to technology, but the cause was not unpopular in its time. Even Lord Byron sympathized. In his maiden speech to the House of Lords in 1812, he defended the organized framebreakers by comparing the results of a Jacquard loom's mechanical weaving to "spider-work." Privately, he worried that, in his sympathy for the Luddites, he might be taken as "half a framebreaker" himself. He was, of course, not-and he was dead wrong about the spider work, too. Even as Byron made his case, Jacquard looms were producing a quality and volume of textiles unlike anything the world had ever seen. The mathematician Charles Babbage owned a portrait of Joseph-Marie Jacquard woven from thousands of silk threads using twenty-four thousand punched cards, a weaving so intricate that it was regularly mistaken for an engraving by his guests. And although the portrait was a fine possession, it was the loom itself, and its punch card programs, that really ignited Babbage's imagination. "It is a known fact," Babbage proclaimed, "that the Jacquard loom is capable of weaving any design which the imagination of man may conceive." As long as imagination could be translated into a pattern, it could be infinitely reproduced, in any volume, in any material, in any combination of colors, without degradation. Babbage understood the profundity of the punched-paper program because mathematical formulae work the same way: run them again and again, and they never change. He was so taken with the Jacquard loom, in fact, that he spent the better part of his life designing computing machines fed by punch cards. To describe how these worked, he even adopted the language of the textile factory, writing of a "store" to hold the numbers and a "mill" where they could be processed, analogous to a modern computer's memory and central processing unit. Numbers would move through Babbage's machines, coming together as thread becomes whole cloth. Babbage's machines-the Difference Engine, a hand-cranked mechanical calculator designed to tabulate polynomial functions, and the more complex Analytical Engine-were so far ahead of their time that they're generally considered historical anachronisms. His mechanical designs required a level of technical precision never before attempted, although the British government, for whom mathematical tables were a point of national interest, was willing to try. It funded construction of the Difference Engine in 1823, with an initial grant of seventeen hundred pounds; by the time it wrote off the project, nearly twenty years later, having spent ten times as much, there was still nothing to show for what the prime minister had by then determined to be a "very costly toy," and "worthless as far as science is concerned," save some partial models and four hundred square feet of confounding schematic drawings. The machines made Babbage famous-and perhaps infamous-but very few people alive in his time were mentally equipped to understand what they were supposed to do, let alone how. One of those people was Lord Byron's daughter, Ada. In her short life, she would make one thing certain: that the spider work her father had so disdained would proliferate, unstoppable. Rays from Every Corner of the Universe Ada's alchemy was peculiar. She was the child of a passionate yearlong marriage between Byron and a bright, mathematically inclined aristocrat named Anne Isabella Milbanke, or Annabella. Byron was, in a former lover's estimation, "mad, bad, and dangerous to know," his passions Romantic in every sense; Annabella, on the other hand, was so sensible and well-bred that Byron teasingly called her the "Princess of Parallelograms." The couple separated amid rumors that the louche Byron had a more-than-fraternal relationship with his half sister Augusta. Amid the scandal of that separation, the last thing Annabella wanted was for Ada to inherit any of her father's wildness or to suffer as a consequence of his notoriety. To keep her daughter on the straight and narrow, Annabella began a rigorous course of mathematical instruction from the time Ada was four years old. Math-the opposite of poetry. Or so she thought. Byron absconded to Italy shortly after Ada's birth. He never made her acquaintance, although he inquired after her often. "Is the Girl imaginative?" he wrote to Augusta, knowing full well that Annabella, who kept their daughter purposefully secluded, would divulge nothing directly. Byron died unromantically of the flu in Greece in 1824, when Ada was only nine. As he died, he called to his valet, "Oh, my poor dear child! My dear Ada! My God, could I have seen her! Give her my blessing!" His body was returned to England by ship, and huge crowds gathered in the streets of London to see his funeral procession of forty-seven carriages. When Ada finally learned her father's name, she wept for him, although it doesn't appear that she or her mother held his legacy in high esteem-Byron's portrait, in their home, was concealed under heavy drapery until Ada was twenty. But his mercurial spirit was alive in her. "I do not believe that my father was (or ever could have been) such a Poet as I shall be an Analyst; (& Metaphysician)," she wrote to Charles Babbage later in life, "for with me the two go together indissolubly." Ada's sharp analytical mind was inflected by a wild imagination. Prevented from a formal university education by her gender, she thrived under private tutelage. A precocious and very lonely child, she designed flying machines and marched around the billiard table playing violin. She was also frequently ill, prone to episodes of what was then called hysteria, and barely survived a serious three-year bout of measles, during which Annabella took advantage of her daughter's bedridden condition to double down on schoolwork. But Ada was indomitable, agitated, and charismatic, and when she outpaced-and in one case, seduced-her tutors, she educated herself with books and through correspondence with some of nineteenth-century England's most illustrious minds. She was only a teenager when she struck up a close friendship with the well-known scientist Mary Somerville, who would answer her questions and encourage her studies. The logician Augustus De Morgan sent her problems by post, only to be astounded by the power of thinking represented in her responses. Had she been a man, he marveled, her "aptitude for grasping the strong points and the real difficulties of first principles" would have made her "an original mathematical investigator, perhaps of first rate eminence." She did not shrink away from difficulty, and she had a peculiar way of learning: she questioned the basic principles of mathematics to drill down to their fundamental meaning and understand them completely. Ada first met Charles Babbage when she and her mother went to see his Difference Engine, the first of his very expensive, very unfinished mathematical machines, in London. She was seventeen; Babbage was forty-two. He displayed the machine-a piece of it, anyway-in a salon where he hosted Saturday-night soirZes that attracted the most prominent names in society: Charles Darwin, Michael Faraday, Charles Dickens, the Duke of Wellington. It wasn't long after Ada's ritual debut in court, where she had worn satin and tulle and made whispered pronouncements to her mother about the various dukes to whom she was presented: Wellington, she liked, and the Duke of Orleans, too, but the Duke of Talleyrand? He was an "old monkey." Ada diligently made the rounds, but she held her social obligations in low esteem. She was, however, immediately mesmerized by Babbage's machine, a hulking block of interlinked brass gears and cogs. "While other visitors gazed at the working of this beautiful instrument with the sort of expression, and I dare say the sort of feeling, that some savages are said to have shown on first seeing a looking-glass or hearing a gun," wrote an onlooker, "Miss Byron, young as she was, understood its working, and saw the great beauty of the invention." Not long afterward, Ada became Ada Augusta King, after her marriage to a sensible aristocrat a decade her senior, and then, three years later, her husband's peerage elevated, the Countess of Lovelace. By the age of twenty-four, she'd borne three children-one, a son, named after her father-and was managing her family's homes in Surrey and London, but she continued to study mathematics every day, and she remained fascinated by the Difference Engine. Excerpted from Broad Band: The Untold Story of the Women Who Made the Internet by Claire L. Evans All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.

Table of Contents

Introduction: The Dellp. 1
Part 1 The Kilogirlsp. 7
Chapter 1 A Computer Wantedp. 9
Chapter 2 Amazing Gracep. 27
Chapter 3 The Salad Daysp. 53
Chapter 4 Tower of Babelp. 64
Chapter 5 The Computer Girlsp. 75
Part 2 Connection Tripp. 81
Chapter 6 The Longest Cavep. 83
Chapter 7 Resource Onep. 95
Chapter 8 Networksp. 109
Chapter 9 Communitiesp. 129
Chapter 10 Hypertextp. 153
Part 3 The Early True Believersp. 175
Chapter 11 Miss Outer Borop. 177
Chapter 12 Women.comp. 204
Chapter 13 The Girl Gamersp. 222
Epilogue: The cyberfeministsp. 237
Acknowledgmentsp. 243
Notesp. 245
Indexp. 269